

Emetteur / Transmetteur

Mini émetteur / transmetteur PO & GO pour récepteur radio ancien

MiniTx PO-GO

Dossier d'étude

V1.2 - 2025/03 à 08

https://minitx.retrotechnique.org/

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Le MiniTx est un projet Rétrotechnique

I - Objectif

Étudier, prototyper et proposer tous les documents pour la réalisation d'un mini émetteur / transmetteur POpour redonner de la voix aux récepteurs anciens, plus particulièrement à l'attention de l'amateur débutant. Il s'agit d'un projet simple à réaliser, économique, mariant anciennes et nouvelles technologies, dans le but de

Il s'agit d'un projet simple à realiser, économique, mariant anciennes et nouvelles technologies, dans le but de susciter l'intérêt d'un large public.

Aucun logiciel, aucun besoin d'instruments de mesure, aucune mise au point ni réglage ne sont requis, sinon de syntoniser les fréquences d'émission suivant le désir de l'amateur.

Cahier des charges de l'exploitation du mini émetteur / transmetteur MiniTx PO-GO

Un petit circuit autonome (alimentation secteur intégrée suivant niveau de câblage) que l'on pose à proximité d'un poste TSF de salon, que l'on peut intégrer dans un boîtier externe ou dans le récepteur radio ou dans un cadre à poser sur le récepteur, par exemple.

On raccorde les fils Antenne et Terre sur le récepteur,

On prend son Smartphone, on ouvre une appli radio (RTL par exemple), ou un site de streaming, ou un fichier mp3, etc,

On associe le boîtier et le Smartphone (automatique côté boîtier, pas de manipulation, pas de bouton),

On cale son récepteur TSF en réception sur GO, on déplace l'aiguille du cadran sur « Luxembourg »,

Sur le boîtier, on ajuste la fréquence GO à l'aide du potentiomètre multi tour jusqu'à entendre la modulation de RTL sur la fréquence calée sur le récepteur,

On peut doubler simultanément sur une seconde fréquence en PO, si le confort d'écoute est jugé meilleur ou si l'on écoute une station régionale diffusée antérieurement sur cette bande (ex- France Bleu, par exemple). Il est aussi possible de raccorder une source audio externe (CD, tuner, magnétophone...).

Définition des fonctionnalités

Génération RF:

- Émission en GO: fréquence ajustable sur toute la bande via un potentiomètre multi tours,
- Émission en PO : fréquence ajustable sur toute la bande via un potentiomètre multi tours.

Cavaliers de validation : GO seulement, PO seulement, GO+PO simultanées.

Sources de modulation :

- Récepteur modem Bluetooth intégré ; à partir d'un Smartphone, diffusion possible de n'importe quelle source audio (programme radio ou fichier audio),
- Entrée audio analogique externe via un bornier dédié.

Un cavalier de commutation sélectionne la source de modulation : Bluetooth ou Audio externe.

Le montage disposera de deux sorties :

- 1 sortie RF totalement isolée sur transformateur pour attaquer n'importe quel récepteur (idem ModulAM),
- 1 sortie RF capacitive pour attaquer un fil d'antenne de proximité, ou un petit ampli RF.

L'amateur pourra destiner le MiniTx PO-GO à plusieurs types d'exploitation :

- À intégrer en boitier, pour une utilisation universelle,
- À intégrer dans un récepteur TSF,

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

À intégrer dans un cadre ancien, posé sur le récepteur.

Toujours avec un seul circuit imprimé, trois niveaux de câblage seront proposés en fonction du type d'alimentation disponible :

- Niveau A : à partir d'une tension régulée de 12 VDC,
- Niveau B: à partir d'un bloc d'alimentation délivrant une tension redressée de 15 à 25 VDC (récupération d'anciens blocs compacts d'autres équipements devenus obsolètes),
- Niveau C: à partir d'une tension secteur 230 VAC.

L'idée est de proposer un montage sous la forme d'un circuit imprimé et d'une nomenclature de composants traversant, suivant le même principe que le ModulAM, avec :

- Une assistance au montage via l'outil d'assistance adamo,
- Les fichiers Gerber de fabrication du PCB,
- Une notice générale de montage et d'instructions.

Tous les composants proposés sont encore d'un usage courant et disponibles chez de nombreux distributeurs.

Objectif du prix de revient : estimé entre 13 et 22 € (prix au jour de la rédaction de ce document) en fonction du niveau d'équipement.

II - Principe de fonctionnement

On utilise ici quelques astuces en dérivant l'usage originel de certains composants.

La génération des porteuses PO et GO

Le premier circuit CD4049 (IC1) comporte 6 inverseurs logiques.

Le principe consiste à effectuer une boucle avec 3 inverseurs, donc obliger le système à se « mordre la queue » ; comme cette boucle comporte un nombre impair d'inverseurs, le système va osciller à la fréquence maximum que la technologie de ce circuit permet, soit quelques mégahertz.

Mais en ralentissant la vitesse de propagation du bouclage par une cellule RC, on peut, dans une certaine mesure, contrôler la fréquence d'oscillation du système.

C'est ce qui est fait dans la boucle des 3 premiers inverseurs de IC1 : en choisissant judicieusement les valeurs de R et de C et en intégrant un élément variable via un potentiomètre multi tour, on peut donc ajuster l'oscillation sur une plage de fréquence qui couvre au minimum la bande des GO de 150 KHz à environ 300 kHz (bande normalisée en Europe : 153 kHz à 279 kHz).

Avec les 3 autres inverseurs de IC1 on procède de la même façon, mais avec une cellule RC adaptée pour obtenir une plage de fréquences dans les PO, couvrant de 500 kHz à environ 1,7 MHz (bande normalisée en Europe : 531 kHz à 1 602 kHz).

À ce stade on dispose alors de deux signaux de formes logiques sur des plages de fréquences suffisamment larges pour permettre de faire chanter le récepteur sur les PO et/ou les GO.

La source de modulation

Il a été testé et retenu un petit récepteur Bluetooth dont les performances sont excellentes, pour un prix modique (moins de 2 €). Ce module, alimenté en 5 V, intègre l'antenne sous forme imprimée sur le PCB ainsi qu'une sortie audio stéréo analogique.

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

L'association est automatique avec un Smartphone ou un autre type de terminal équipé, une led indiquant lorsque les équipements sont couplés.

Les sorties audio G et D du module Bluetooth sont ensuite additionnées pour obtenir un signal audio monophonique, puis amplifiées via le circuit TL071 (IC3) afin d'obtenir un niveau suffisant pour attaquer le modulateur de l'amplificateur RF.

L'amplificateur RF

C'est le rôle du second circuit CD4049 (IC2) qui va mettre en forme le signal issu de chaque oscillateur, via un premier inverseur, puis ensuite amplifier ce signal pour obtenir une puissance suffisante en sortie, grâce à la mise en parallèle de deux cellules d'inverseurs.

Les 6 inverseurs sont utilisés à cette tâche (3 pour les PO et 3 pour les GO).

Le modulateur

À la sortie de chaque amplificateur on obtient donc une porteuse non modulée à la fréquence souhaitée pour chacune des bandes.

Pour moduler chaque porteuse en AM avec le signal issu de la sortie du TL071 (IC3), on utilise à nouveau une astuce en détournant le fonctionnement de IC2. Sur ce genre de circuit (technologie CMOS) le niveau du signal en sortie d'un inverseur est strictement proportionnel à la valeur de la tension d'alimentation, dans la plage standard de fonctionnement, soit entre 5 V et 15V.

Cela signifie que si la tension d'alimentation varie au rythme de la modulation, le signal en sortie de l'inverseur (porteuse RF) est modulé à ce même rythme. On obtient alors une modulation de l'amplitude du signal RF.

On s'aperçoit aux mesures que la linéarité est excellente!

Le transistor 2N1711 (ou équivalent) s'occupe de gérer cette variation de la tension d'alimentation, piloté par la sortie de IC1.

Au repos (sans modulation) la polarisation du transistor est calculée pour que la tension d'alimentation soit égale à environ 6 V (la moitié de la tension d'alimentation du système). La sortie RF est donc d'environ 6 Vcc. Avec un signal de modulation, le transistor conduit jusqu'à un état proche de la saturation, alimentant ainsi IC2 avec une tension proche de 12 V, dans les pointes de modulation.

Le filtrage RF

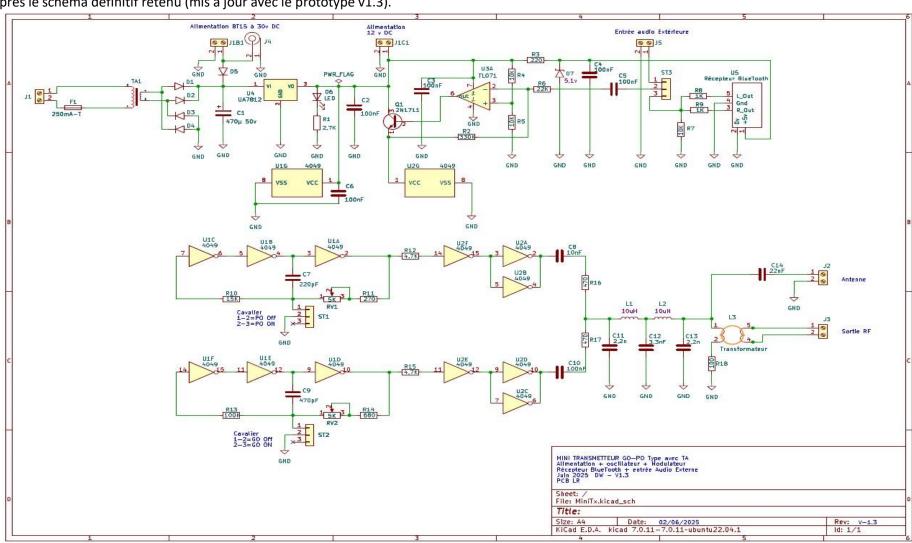
Les deux signaux RF (PO et GO) sont additionnés et le signal résultant attaque un filtre d'ordre 5 dont le point d'inflexion de la fréquence de coupure est fixé aux alentours de 1,5 MHz. La rejection au-delà de 3 MHz est supérieure à 35 dB.

En sortie du filtre le signal est RF est disponible soit via une liaison capacitive destinée à raccorder une antenne (fil de quelques mètres) pour un rayonnement de proximité, soit via un transformateur assurant la symétrie et l'isolement galvanique du signal.

Cette sortie est particulièrement destinée à l'entrée d'un récepteur (A et T) sans risque de désordre électrique. L'impédance de sortie est de l'ordre d'une centaine d'ohms, ce qui permet le raccordement de n'importe quel type de récepteur TSF ou même de plusieurs récepteurs.

Choix des composants

Les composants actifs et passifs sont standards et disponibles auprès de la plupart des distributeurs.

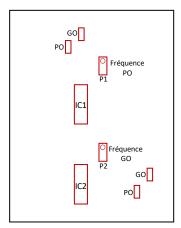


Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

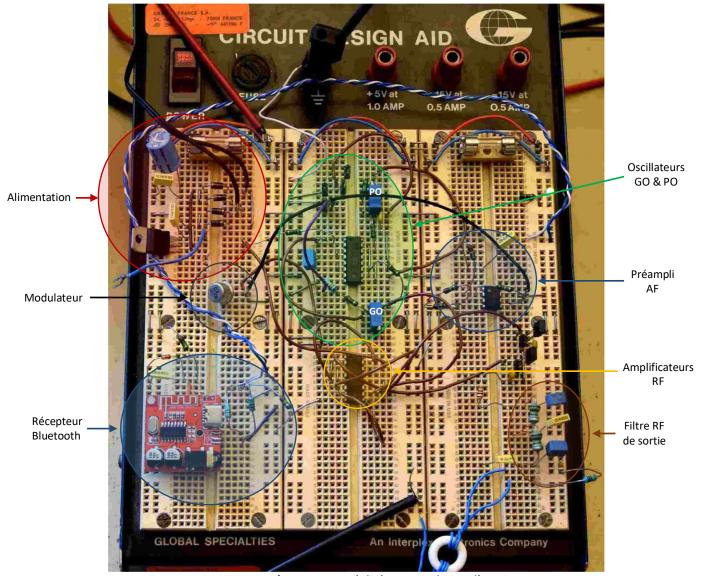
DW-2025-08 - v1.2

III - Schéma électronique

Ci-après le schéma définitif retenu (mis à jour avec le prototype v1.3).



Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude


DW-2025-08 - v1.2

IV - Maquette / Prototype 1

Ce chapitre synthétise le suivi de l'étude, d'un prototypage et des tests de performances. Un premier prototype a été réalisé sur une platine d'essai, à l'aide de composants disponibles au labo.

Repérage des réglages et cavaliers de mise au point

Maquette / prototype 1 réalisé sur une platine d'essai.

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Différentes mesures et mises au point ont été effectuées sur cette maquette afin de valider l'objectif recherché en matière de caractéristiques et de performances.

V – Nomenclature

Le tableau ci-après propose un cliché de la nomenclature (v1.2) proposant les références et les liens vers des fournisseurs possibles des composants, en fonction du type d'alimentation souhaité (A, B ou C).

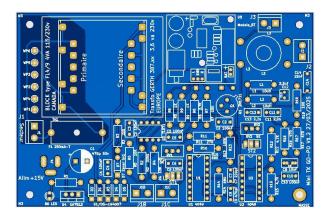
				Version du MiniTx			Fournisseur possible		Prix estimé
Repère schéma	Designation	Valeur	Quantité	Α	В	С	Entreprise	Lien	pour la quantité
	RT-MiniTx GO-PO	v1.3	1	Х	Х	Х	JLPCB	JLCPCB - 5p	3,85€
TA1	Transformateur 3,6 VA - 230 V/15 V	387.18-1	1			Х	Reichelt	Transformateur 15V 3,6VA	5,55€
PF1	Porte fusible PCB 5x20	CFH02	1			Х	Farnell	Porte fusible 5 x 20 mm	0,33€
F1	Fusible cartouche 5x20 temporisé	250 mAT	1			Х	Farnell	Fusible 5 x 20 T - 250 mA	1,10€
D1 à D4	Diode redressement	1N4002	4			Х	AliExpress	Diode 1N4002	0,08€
D5	Diode redressement	1N4002	1		Х		AliExpress	<u>Diode 1N4002</u>	0,02€
D6	Led verte 3 mm	MP008272	1	Х	Х	х	Farnell	LED VERTE	0,25€
D7	Diode Zener 5,1 V - 0,5W	BZX55C5V1	1	Х	Х	Х	AliExpress	Zener 5,1V 1 / 1/2W	0,03€
J1	Bornier à vis	2 Br	1			Х	AliExpress	<u>Bornier à vis</u>	0,14€
J1B1	Bornier à vis	2 Br	1		Х				0,14€
J1C1	Bornier à vis	2 Br	1	Х					0,14€
J2, J3, J5	Bornier à vis	2 Br	3	Х	Х	Х			0,42€
J4	Embase alim BT	2 Br	1		Х		AliExpress	Embase aliment. BT	0,14€
U5	Module Bluetooth	RxBT5.0MP3	1	Х	Х	Х	AliExpress	Modem Bluetooth	1,36€
R18	Résistance - 0,25W - 5%	100 Ω	1	Х	Х	Х	AliExpress	Résistance 1/4 W	0,01€
R3	Résistance - 0,25W - 5%	220 Ω	1	X	Х	Х			0,01€
R11	Résistance - 0,25W - 5%	270 Ω	1	X	X	Х			0,01€
R16, R17	Résistance - 0,25W - 5%	470 Ω	2	Х	Х	Х			0,02€
R14	Résistance - 0,25W - 5%	680 Ω	1	X	Х	Х			0,01€
R8, R9	Résistance - 0,25W - 5%	1 kΩ	2	X	Х	Х			0,02€
R1	Résistance - 0,25W - 5%	2,7 kΩ	1	Χ	Х	Х			0,01€
R12, R15	Résistance - 0,25W - 5%	4,7 kΩ	2	X	X	Х			0,02€
R4, R5, R7	Résistance - 0,25W - 5%	10 kΩ	3	X	Х	Х			0,03€
R10	Résistance - 0,25W - 5%	15 kΩ	1	X	Х	Х			0,01€
R6	Résistance - 0,25W - 5%	22 kΩ	1	X	X	X			0,01€
R13	Résistance - 0,25W - 5%	100 kΩ	1	X	X	X			0,01€
R2	Résistance - 0,25W - 5%	330 kΩ	1	Х	Х	Х			0,01€
RV1, RV2	Potentiomètre multi tour	5 kΩ	2	Х	Х	х	AliExpress	Pot. multitours 5 kΩ	0,26€
L1, L2	Inductance	10 μΗ	2	Х	х	х	AliExpress	<u>Inductance</u>	0,40€
L3	Tore ferrite / Inductance	SP1	1	Х	х	х	RS Composants	Tore ferrite	0,76€
C1	Condensateur électrolytique	470 μF 35 V	1		Х	Х	AliExpress	Condensateur électrolytique	0,14€
C7	Condensateur mica	220 pF	1	Х	Х	х	AliExpress	Condensateur mica	1,59€
C9	Condensateur mica	470 pF	1	X	X	X			1,59€
C11, C13	Condensateur céramique	2,2 nF	2	Х	Х	х			0,03€
C12	Condensateur céramique	3,3 nF	1	Х	Х	Х	AliExpress	<u>Condensateur céramique</u>	0,01€
C8	Condensateur céramique	10 nF	1	X	Х	Х			0,01€
C14	Condensateur céramique	22 nF	1	X	Х	Х			0,01€
C2 à C6, C10	Condensateur céramique	100 nF	6	X	Х	Х			0,09€
SUP-U1, U2	Support CI DIL 16 broches	16 br	2	Х	Х	Х	AliExpress	Support CI - DIL	0,12€
SUP-U3	Support CI DIL 8 broches	8 br	1	Х	Х	Х			0,04€
U1, U2	Six inverseurs CMOS	CD4049	2	Х	Х	Х	AliExpress	CD4049	0,24€
U3A	Ampli Opérationnel	TL071	1	X	Х	Х	AliExpress	TL071	0,12€
U4	Régulateur positif 12 V	L7812	1		Х	Х	AliExpress	L7812	0,09€
Q1	Transistor NPN	2N1711	1	Х	Х	Х	AliExpress	2N1711	2,79€
ST1 à ST3	Connecteur	3 br Mâle	3	X	Х	Х	AliExpress	Bornier à vis	0,09€
CAV1 à CAV3	Cavalier Dupont	2 Br Femelle	3	X	Х	Х	AliExpress	Cavalier 2,54 mm	0,02€

Nota: les liens vers les fournisseurs seront actifs au sein du document « Nomenclature Niveau 2 ».

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Version A : alimentation à partir d'une tension de 12 VDC régulée, prix de revient estimé à environ 13 €.

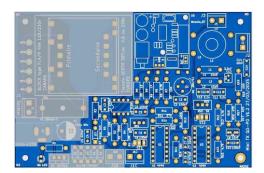

Version B : alimentation à partir d'une tension de 15 à 25 VDC filtrée, prix de revient estimé à environ 15 €.

Version C : alimentation à partir du réseau secteur 230 VAC, prix de revient estimé à environ 22 €.

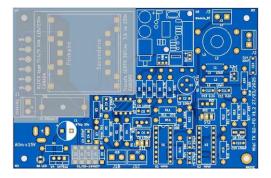
Nota : cette nomenclature a été mise à jour avec la dernière version du montage (prototype v1.3 représentatif du montage définitif). Une nomenclature complète (nommée niveau 1) sera publiée sur le site avec le détail pour chaque composant du MiniTx.

VI – Prototype v1.2

Après validation de la maquette / prototype 1, un circuit imprimé a été dessiné puis un ensemble a été câblé. Dimensions : 185 x 130 mm.



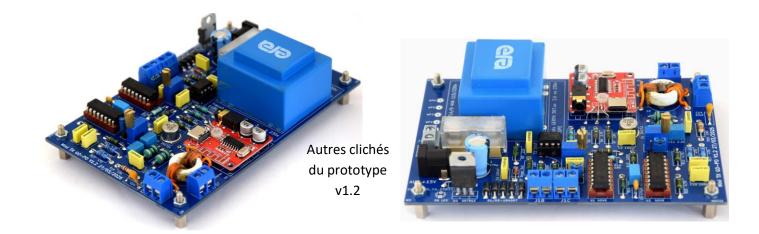
PCB côté composants

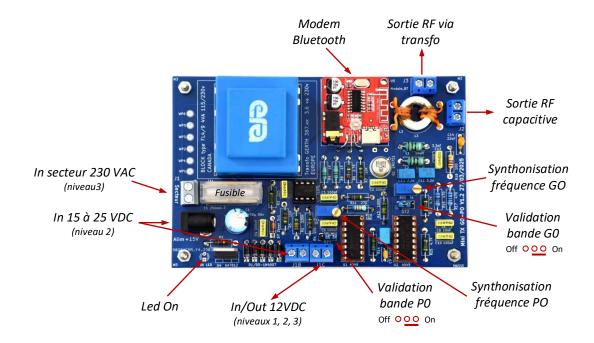

PCB côté cuivre

Le câblage a été réalisé suivant les trois niveaux prévus dans l'étude préliminaire.

Niveau 1: alimentation par une source externe de tension stabilisée de 12 VDC

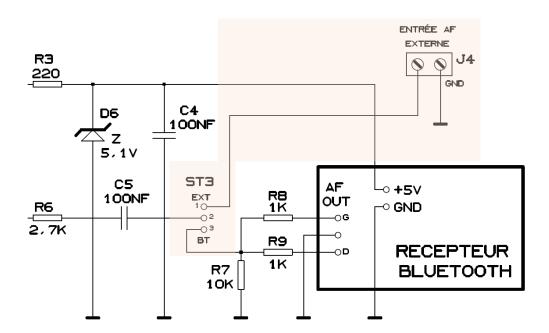
Niveau 2 : alimentation par une source externe de tension redressée de 15 à 25 VDC.


Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude


DW-2025-08 - v1.2

Niveau 3 : alimentation par le réseau secteur 230 VAC.

Repérage des entrées, sorties, commandes et signalisations.


Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Une nouvelle session de mesure a été effectuée sur le prototype v1.2 et les performances audio de l'ensemble ont été légèrement améliorées après l'optimisation de certaines valeurs de composants.

Par ailleurs, les différentes manipulations ont démontré qu'il était dommage de ne pas bénéficier d'une entrée audio externe pour l'amateur qui souhaiterait raccorder un lecteur CD ou une source audio analogique quelconque.

Le prochain prototype (v1.3) qui sera représentatif de la version définitive bénéficiera de cette entrée audio externe, suivant le schéma ci-après.

Cette nouvelle version verra aussi une sérigraphie améliorée pour le repérage de certains composants, une implantation simplifiée du transformateur d'alimentation, maintenant que le modèle définitif a été choisi, et une double implantation pour certains condensateurs (pas de 2,54 et 5,02 mm) pour faciliter l'approvisionnement en fonction des fournisseurs.

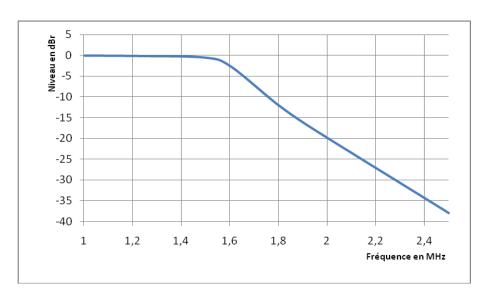
VII – Session de mesures effectuées sur le prototype v1.2

Mesures du filtre RF de sortie

Point d'insertion du signal de test (fréquence porteuse non modulée) : en amont de la résistance de 470 Ω d'entrée du filtre.

Point de mesure : en aval de l'inductance de sortie de 10 µH.

Conditions : sortie chargée par R = 100Ω .


Perte d'insertion: 1 dB @ F = 100 kHz.

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Courbe de réponse du filtre : graphique ci-après.

Mesure des performances du MiniTx

Mesures RF et démodulées réalisées avec l'analyseur Rohde & Schwarz FMAB Mesures AF réalisées avec l'analyseur HP 8903B

Mesures effectuées sur la sortie RF capacitive.

Section GO

Plage de syntonisation constatée de la fréquence (RV2) : 98 kHz à 400 kHz (bande officielle : 153 à 279 kHz)

Niveau RF de sortie:

Sortie chargée sur 50 Ω: 0 dBm

Sortie non chargée: 6 Vcc

Variation du niveau de sortie sur la totalité de la bande : < 0,5 dB

Modulation ($F_{RF} = 200 \text{ kHz et } F_{AF} = 800 \text{ Hz}$)

Taux 30 % : THD = 0,23 % Taux 50 % : THD = 0,47 %

Taux de modulation pour THD de 3%: 80 % SINAD : 45 dB pour taux de modulation de 30%

Section PO

Plage de syntonisation constatée de la fréquence (RV1) : 280 kHz à 1650 kHz (bande officielle : 531 à

1 602 kHz)

Niveau RF de sortie :

Sortie chargée sur 50Ω : 0 dBmSortie non chargée : 6 Vcc

Variation du niveau de sortie sur la totalité de la bande : < 0,5 dB

Modulation ($F_{RF} = 1 \text{ MHz et } F_{AF} = 800 \text{ Hz}$)

Taux 30 % : THD = 0,66 % Taux 50 % : THD = 0,47 %

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Taux de modulation pour THD de 3% : 72 % SINAD : 42 dB pour taux de modulation de 30 %

Mesure de la sensibilité AF

Injection d'un signal sinus @ 800Hz à l'entrée EXT

Sensibilité: 150 mV pour un taux de modulation de 30 %

Mesure de la consommation

Module Bluetooth seul:

Courant stabilisé (module non associé) : 9,8 mA @ 5VDC

Courant stabilisé (module associé, avec modulation): 15 mA @5VDC

Consommation du **MiniTx** complet avec le module Bluetooth associé via un Smartphone et avec diffusion de modulation, la led témoin de marche allumée :

Tension: 11,5 VDC: 90 mA Tension: 12 VDC: 97 mA Tension: 12,5 VDC: 103 mA.

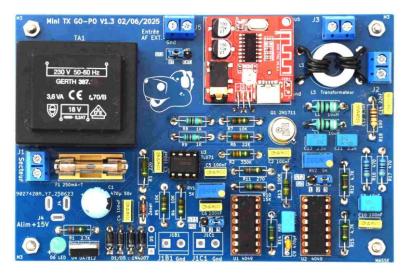
Mise à jour de ce document en v1.2 / août 2025.

VIII - Prototype v1.3

Un dernier prototype représentatif de la version définitive du circuit imprimé a été réalisé sous la version v1.3. L'ensemble des optimisations et modifications ayant fait l'objet des remarques après essais du prototype v1.2 a été porté sur cette nouvelle version.

Par ailleurs, dans la version alimentation sur secteur 230 VAC, le transformateur d'alimentation a été ajusté et le modèle proposant un secondaire de 15 VAC a été retenu (au lieu de 18 VAC initialement).

Cette optimisation permet de réduire l'échauffement du régulateur L7812 et d'éviter le montage d'un refroidisseur.


Toutes les mesures ont été contrôlées et confirment les performances déjà obtenues sur le prototype v1.2.

Ci-après quelques clichés du prototype v1.3, avec les composants exacts référencés dans la nomenclature

détaillée (nomenclature niveau 1).

Ce circuit imprimé v1.3 a été câblé dans la version C: alimentation sur secteur 230 VAC.

On remarque en haut, à gauche du module Bluetooth, le connecteur de l'entrée audio externe qui a été ajouté avec, au-dessous, le cavalier de sélection de la source audio.

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Ci-contre, un autre prototype en version 1.3 du **MiniTX PO-GO**, monté sur une planchette de démonstration, utilisé en fonctionnement sur un récepteur, lors de manifestations et expositions TSF.

IX - Documentations

L'étude est aujourd'hui totalement terminée.

Il reste maintenant à formaliser correctement et clairement l'aspect documentaire pour permettre à chacun de réaliser le **MiniTx PO-GO** le plus aisément possible.

À la date de la rédaction de cette version 1.2 de ce document (fin août 2025) les travaux suivants sont en cours de réalisation :

- Le montage assisté via l'outil <u>adamo</u> : il suffira de suivre pas à pas les instructions pour placer chaque composant là où il doit être soudé et dans le bon sens !
- La fabrication du fichier Gerber pour la réalisation du circuit imprimé ainsi que la procédure pour le commander auprès d'un fournisseur,
- Les nomenclatures (niveaux 1 et 2) pour identifier chaque composant et pour guider les approvisionnements vers des fournisseurs possibles,
- La rédaction de la notice générale de montage et d'exploitation du **MiniTx PO-GO**. Elle sera explicite, très illustrée et rédigée en priorité pour être compréhensible par le plus grand nombre, notamment les débutants vers qui ce montage est particulièrement orienté.

Mini émetteur / transmetteur PO & GO pour récepteurs anciens Dossier de présentation et de suivi de l'étude

DW-2025-08 - v1.2

Le montage du **MiniTx PO-GO** nécessitera de fabriquer le transformateur RF L3 et de préparer le module Bluetooth afin qu'il puisse s'insérer correctement sur le circuit imprimé.

Rien de complexe!

L'assistant <u>adamo</u> guidera l'utilisateur au moment du câblage de ces deux composants et des fiches techniques complémentaires d'ores et déjà disponibles expliquent en détail comment réaliser ces opérations :

- Fabrication du transformateur L3 : Fiche technique MiniTx-L3
- Préparation du module Bluetooth : Fiche technique MiniTx-Bluetooth

L'amateur intéressé par le projet **MiniTx PO-GO** peut en suivre l'évolution sur la page du site internet qui lui est consacrée, à cette adresse : https://minitx.retrotechnique.org/

Chacun peut réagir et commenter ce projet sur l'espace de discussion du forum dédié au **MiniTx** PO-GO : https://forum.retrotechnique.org/c/minitx/

Rappel: toute reproduction ou citation, même partielle, de ce document est assujettie à une demande préalable d'autorisation écrite des auteurs.

Contact: signalements@retrotechnique.org

Pour rester informé de l'actualité et des projets Rétrotechnique, <u>abonnez-vous</u> à notre lette d'information (c'est gratuit et sans engagement, avec désabonnement possible à tout moment).

Conception et rédaction fiche technique : Daniel Werbrouck (DWK)

Référence du document : MiniTx_PO-GO_Etude_v1.2

Suivi des versions : V0.1: ébauche – 04/2025

V1.1 : version de l'étude avec prototype v1.2 validé – 06/2025

V1.2 : version de l'étude avec prototype de série v1.3 validé – 08/2025

Crédit photos et illustrations :

Toutes les figures et illustrations : DWK

Fin du document